Sains Malaysiana 53(11)(2024): 3831-3843
http://doi.org/10.17576/jsm-2024-5311-24
The Effect of
Meteorology and Air Quality to the COVID-19 Cases in Malaysia: A Multivariate
Deep Learning Approach
(Kesan Meteorologi dan Kualiti Udara kepada Kes COVID-19 di Malaysia: Suatu Pendekatan Pembelajaran Mendalam Multivariat)
PEGGY YEO1,
AZURALIZA ABU BAKAR1,*, ZALINDA
OTHMAN1, MAZRURA SAHANI2, SUHAILA ZAINUDIN1 & ZAILIZA SULI3
1Center for Artificial Intelligence
Technology, Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor, Malaysia
2Center for Toxicology and Health Risk Studies (CORE), Faculty of
Heath Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
3Hulu Langat District Health Office, 43000 Kajang,
Selangor, Malaysia
Received: 7
December 2023/Accepted: 4 October 2024
Abstract
In
October 2022, the World Health Organization (WHO) reported that over six
hundred million people globally had been infected by the COVID-19 pandemic,
leading to six million deaths. Malaysia, like many other countries, has
experienced significant economic and societal impacts due to COVID-19. Previous
research has identified meteorological conditions and air quality as critical
factors influencing the spread of infectious diseases like influenza. In this
study, we explore the impact of meteorological and air quality factors on
COVID-19 case numbers in Malaysia, focusing on a case study in the Hulu Langat
district of Selangor state, utilizing a deep learning approach. Our model,
which employs a neural network architecture incorporating both Long Short-Term
Memory (LSTM) and Convolutional Neural Networks (CNN), was trained using
multivariate time-series data. This data included meteorological and air
quality metrics from the Department of Environment, Malaysia, and COVID-19 case
data collected from the Hulu Langat Health Office. We prepared three datasets for
predictive modeling: one combining all features, one
including only meteorological data, and another with only air quality data. Our
results indicate that the CNN model outperformed the LSTM model in terms of
prediction accuracy. Furthermore, the dataset incorporating all features
resulted in the lowest prediction error, compared to datasets with only
meteorological or air quality features. Feature importance analysis showed that
air quality factors were the most significant predictors, suggesting that air
quality has a greater impact on COVID-19 case numbers than meteorological
factors.
Keywords: Air
quality; COVID-19 cases; feature ranking; meteorology; multivariate LSTM and
CNN
Abstrak
Pada Oktober 2022, Pertubuhan Kesihatan Sedunia (WHO) melaporkan bahawa lebih enam ratus juta orang di seluruh dunia telah dijangkiti oleh pandemik COVID-19, yang membawa kepada enam juta kematian. Malaysia, seperti kebanyakan negara lain, telah mengalami kesan ekonomi dan sosial yang ketara akibat COVID-19. Penyelidikan sebelum ini telah mengenal pasti keadaan meteorologi dan kualiti udara sebagai faktor kritikal yang mempengaruhi penyebaran penyakit berjangkit seperti influenza. Dalam kajian ini,
kami meneroka kesan faktor meteorologi dan kualiti udara terhadap bilangan kes COVID-19 di
Malaysia, memfokuskan kepada kajian kes di daerah Hulu Langat, Selangor menggunakan pendekatan pembelajaran mendalam. Model kami yang menggunakan seni bina rangkaian saraf yang menggabungkan Memori Jangka Pendek Panjang (LSTM) dan Rangkaian Neural Konvolusi (CNN) telah dilatih menggunakan data siri masa multivariat.
Data ini termasuk metriks meteorologi dan kualiti udara daripada Jabatan Alam Sekitar, Malaysia dan data kes COVID-19 yang dikumpul daripada Pejabat Kesihatan Hulu Langat. Kami menyediakan tiga set data untuk pemodelan ramalan: satu menggabungkan semua ciri, satu hanya data meteorologi dan satu lagi dengan hanya data kualiti udara.
Keputusan kami menunjukkan bahawa model CNN mengatasi model LSTM dari segi ketepatan ramalan. Tambahan pula, set data
yang menggabungkan semua ciri menghasilkan ralat ramalan yang paling rendah, berbanding set data dengan hanya ciri meteorologi atau kualiti udara. Analisis kepentingan ciri mendedahkan bahawa faktor kualiti udara adalah peramal yang paling penting, menunjukkan bahawa kualiti udara mempunyai kesan yang lebih besar terhadap bilangan kes COVID-19 berbanding faktor meteorologi.
Kata kunci: Kedudukan ciri; kes COVID-19; kualiti udara; meteorologi; multivariat LSTM dan
CNN
REFERENCES
Adhikari, A. & Yin, J. 2021. Lag effects of ozone,
PM2.5, and meteorological factors on COVID-19 new cases at the
disease epicenter in queens, New York. Atmosphere 12(3): 357.
Ali, N. & Islam, F. 2020. The effects of air
pollution on COVID-19 infection and mortality - A review on recent evidence. Frontiers
in Public Health 8: 580057.
Felix Gers, FA., Schraudolph,
NN., & Schmidhuber, J. 2002. Learning precise
timing with LSTM recurrent networks. Journal of machine learning research.
115-143
Ghobakhloo, S., Miranzadeh, M.B., Ghaffari, Y., Ghobakhloo, Z. & Mostafaii,
G.R. 2022. Association between air pollution, climate change, and COVID-19
pandemic: A review of recent scientific evidence. Health Scope 11(4):
e122412. https://doi.org/10.5812/jhealthscope-122412
Goodfellow, I., Bengio, Y.
& Courville, A. 2016. Deep Learning. Massachusetts: MIT Press.
http://www.deeplearningbook.org
Hasan, R.A. & Jamaludin,
J.E. 2023. Prediction of COVID-19 cases for Malaysia, Egypt, and USA using deep
learning models. Malaysian Journal of Fundamental and Applied Sciences 19: 417-428.
Jalaludin, J., Wan Mansor, W.N., Abidin, N.A., Suhaimi, N.F. & Chao, H-R. 2023. The impact of air
quality and meteorology on COVID-19 cases at Kuala Lumpur and Selangor,
Malaysia and prediction using machine learning. Atmosphere 14(6): 973.
https://doi.org/10.3390/atmos14060973
Kelleher, J.D., Namee, B.M.
& D’Arcy, A. 2020. Fundamentals of Machine Learning for Predictive Data
Analytics Algorithms, Worked Examples, and Case Studies. 2nd ed.
Massachusetts: MIT Press.
Khan, Z., Ualiyeva, D.,
Khan, A., Zaman, N., Sapkota, S., Khan, A., Ali, B. & Ghafoor, D. 2021. A
correlation among the COVID-19 spread, particulate matters, and
angiotensin-converting enzyme 2: A review. Journal of Environmental and
Public Health 2021: 5524098.
Lloyd, B.N. & Viswanathan, P.M. 2022. A long term
observation of meteorological influence on COVID-19 pandemic spread in Malaysia
- A case study. Journal of Climate Change 8(1): 67-96.
Madini, O.A., Mutasem, J. & Reem, A. 2022. Time series predicting of
COVID-19 based on deep learning. Neurocomputing 468: 335-344.
https://doi.org/10.1016/j.neucom.2021.10.035
Mohan Viswanathan, P., Sabarathinam,
C., Karuppannan, S. & Gopalakrishnan, G. 2022.
Determination of vulnerable regions of SARS-CoV-2 in Malaysia using meteorology
and air quality data. Environment, Development and Sustainability 24(6):
8856-8882. https://doi.org/10.1007/s10668-021-01719-z
Mohd Halim, N.F., Mohd Zahid, A.Z., Salleh, M.Z.M. & Abu Bakar, A.A.
2022. Air quality status during pandemic COVID 19 in urban and sub-urban area
in Malaysia. IOP Conf. Ser.: Earth Environ. Sci. 1019: 012044.
Nielsen, M.A. 2015. Neural Networks and Deep
Learning. Determination Press.
Ogunjo, S.T., Fuwape, I.A. & Rabiu,
A.B. 2022. Predicting COVID-19 cases from atmospheric parameters using machine
learning approach. GeoHealth 6(4):
e2021GH000509. https://doi.org/10.1029/2021GH000509
Ramirez-Alcocer, U.M.,
Tello-Leal, E., Macías-Hernández, B.A. &
Hernandez-Resendiz, J.D. 2022. Data-driven prediction
of COVID-19 daily new cases through a hybrid approach of machine learning
unsupervised and deep learning. Atmosphere 13(8): 1205.
https://doi.org/10.3390/atmos13081205
Shen, N.W., Bakar, A.A. & Mohamad, H. 2023.
Univariate and multivariate long short term memory (LSTM) model to predict
COVID-19 cases in Malaysia using integrated meteorological data. Malaysian
Journal of Fundamental and Applied Sciences 19: 653-667.
Valsamatzi-Panagiotou, A. & Penchovsky, R. 2022. Environmental factors influencing the
transmission of the coronavirus 2019: A review. Environmental Chemistry
Letters 20(3): 1603-1610.
WHO. 2022. WHO Coronavirus (COVID-19) Dashboard | WHO
Coronavirus (COVID-19) dashboard with vaccination data.
https://covid19.who.int/ (Accessed on 4 December 2022).
Yu, Z., Abdel-Salam, A.S.G., Sohail,
A. & Alam, F. 2021. Forecasting the impact of
environmental stresses on the frequent waves of COVID19. Nonlinear Dynamics 106(2): 1509-1523.
Zhou, N., Dai, H., Zha, W.
& Lv, Y. 2022. The impact of meteorological
factors and PM2.5 on COVID-19 transmission. Epidemiology and
Infection 150: e38. https://doi.org/10.1017/S0950268821002570
*Corresponding author; email:
azuraliza@ukm.edu.my